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In memory of Branko Grünbaum.

In 1934, K. Reinhardt asked if any tile exists such that two copies can completely
enclose a third copy [4]. In 1936, Reinhardt’s student Heinz Voderberg answered this
question in the affirmative by inventing a special shape, now known as the Voderberg
tile, shown in Figure 1. In fact, the two copies of the Voderberg tile can enclose∗ a third
and a fourth copy (Figure 1)! More generally, a tile T has the r-enclosure property if
two copies T1 and T2 of T can be arranged so that the complement of T1 ∪ T2 has a
bounded component, the closure of which is the union of r non-overlapping copies of
T (as discussed, for example, by Grünbaum and Shepherd [3, 4]). In Figure 1, we see
that the Voderberg tile has the 1- and 2-enclosure property.

Figure 1 (a) The Voderberg tile. (b) The Voderberg tile has the 1-enclosure and the 2-
enclosure property.

The enclosure property of the Voderberg tile is surprising and somewhat unintuitive,
but this gangly tile’s true beauty emerges in the tilings it generates, such as those shown
in Figures 2(a) and 2(b). In this paper, we will explain how to construct a generalized
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∗Well, almost—see [5].
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version of the tile in such a way that it can tessellate the plane, and we will go on to
demonstrate some additional surprising properties that these tilings have.

Figure 2 (a) A periodic tiling by the Voderberg tile. (b) A spiral tiling by the Voderberg
tile.

Construction of a generalized Voderberg tile

The Voderberg tile was brought to a wide audience by Gardner [1], in 1977. Grünbaum
and Shephard [4] describe a construction attributed to Goldberg [2] for a generalized
family of tiles having members with the r-enclosure property for any r ≥ 1. We will
call these tiles generalized Voderberg tiles and denote them by Vn. For n > 1, these
tiles are similar to the original Voderberg tile V1, with the main differences being that
they are thinner and that their “beaks” (see Figure 1) have n bends (or sections) instead
of the single section of the original. Here we will reproduce and expound upon the
construction in Grünbaum and Shephard [4] of the generalized Voderberg tile family.

Let n and k be positive integers with k � 1. Our goal is to describe the construction
of Vn tiles with beak angle β = π/k. Having a beak angle that is commensurate with
π allows for more kinds of spiral tilings to be formed from copies of the Vn tile, such
as that in Figure 2. First we will give the construction of Vn that does not require β

to be commensurate with π , then afterward we show how Vn with such specified β is
obtained.

In the illustration of the construction in Figure 3 we use n = 3, but the construction
described here is for general n. Start with 4 horizontal, parallel lines a1, a2, a3, and
a4 spaced 1 unit apart, then construct the polygonal line ABCD with A ∈ a3, B ∈ a1,
C ∈ a4, and D ∈ a2 with right angles at B and C. Let α be the acute angle formed by
AB and a1. Let DE be the circular arc between a2 and a4 centered at A, and similarly
let AF be the circular arc between a1 and a3 centered at D. Let EE′ be 1/n of the arc
DE, and divide the arc AF into n equal subarcs

AA1, A1A2, . . . , An−1F.

Let S be the polygonal line

AA1A2 . . . An−1FBCE

and let S ′ be the result of rotating S about A until E coincides with E′ (i.e., through
an angle of −θ/n). The tile bounded by S, S ′, and EE′ is then a generalized Voderberg
tile Vn. Note that Vn is a (2n + 7)-gon, and also observe that the beak angle β satisfies
β = θ/n where θ = m(∠DAE). In terms of the construction, the beak of the Vn tile is
the thin part of the tile extending from F and F ′ to A, and the butt is the region near
the segment EE′.
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Figure 3 Construction of the generalized Voderberg tile.

Figure 4 Completed construction of a V3 tile.

The angle α = ∠ABF in Figure 3 was chosen arbitrarily in the construction
described above, but with some care we can specify α so that the beak angle β is
a factor of π . To that end, let M ∈ a3 be the midpoint of DE and let H be the point on
the a4 such that BH is perpendicular to BF. Notice that

	AFB, 	BHC, and 	CED

are all similar right triangles, since

∠ABF = ∠CBH = ∠DCE = α,

with DE = AF = 2 and BH = 3. Now

EC = 2 cot α, CH = 3 tan α, and BF = 2 cot α.

It follows that

AM = EC + CH + BF = 4 cot α + 3 tan α.

Now, in 	AMD we see that ∠DAM = θ/2, and so

tan θ/2 = 1

4 cot α + 3 tan α
= tan α

4 + 3 tan2 α
. (1)

Set T = tan(θ/2) and x = tan α so that equation (1) gives

3T x2 − x + 4T = 0. (2)
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We solve equation (2) for x to get

tan α = 1 ± √
1 − 48 tan2(θ/2)

6 tan(θ/2)
. (3)

Now require that β = θ/n = π/k, so that θ/2 = nπ/2k. Then we must have

1 − 48 tan(θ/2) = 1 − 48 tan
nπ

2k
≥ 0.

Solving this inequality for k gives

k ≥ nπ

2 tan−1
(

1√
48

) . (4)

Thus, based on n alone we can determine the range of allowable values of k.
For example, for a V2 tile, we must have

k >
π

tan−1
(

1√
48

) ≈ 21.9.

Let us choose k = 25. To construct a V2 tile with beak angle β = π/k = π/25, we
have

T = tan
nπ

2k
= tan(π/25).

Thus, T in equation (2) is specified, and solving for x yields two roots x1 and x2, from
which we determine two values of α:

α = tan−1 x1 ≈ 34.2611◦,

α = tan−1 x2 ≈ 62.9389◦.

Either of these values of α can be used to construct a V2 with beak angle π/25, as in
Figures 5 and 6. Notice that both shapes have the same length (from beak to butt). This
is because in equation (1), the denominator of the first fraction is the length of AM,
which depends only on θ . This was held constant in solving equation (2) for x.

In Figure 7, we see a V2 tile exhibiting the 2-, 3-, and 4-enclosure property. Indeed,
Vn tiles have the r- enclosure property for r = 2n − 2, r = 2n − 1, and r = 2n, which
can be seen by noticing that that three enclosure values correspond to the manner in
which the beaks meets the butts on the two enclosing tiles. Observe how the gray tiles
meet in Figure 7. For general Vn, corresponding arrangements can be formed for the
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Figure 5 A V2 tile with k = 25 and beak angle β = π/25 and α ≈ 34.2611◦

Figure 6 A V2 tile with k = 25 and beak angle β = π/25 and α ≈ 62.9389◦

enclosing (gray) tiles. Because of the number of beak segments and how the beak
angle relates to the butt angle (at point E in the construction—that angle is exactly β

more than a right angle), there will be room for exactly 2n − 2, 2n − 1, and 2n copies
(respectively) in the middle, between the enclosing tiles.

Figure 7 A V2 tile exhibiting the 2-, 3-, and 4-enclosure property.

Problems from “G&S”

The contributions of Branko Grünbaum and G. C. Shephard to the development of a
coherent and rigorous theory for tilings cannot be overstated, and much of their work
is summarized in their magnum opus Tilings and Patterns [3]. In this work (and in
others such as [4]) they were also generous in sharing open problems. In particular,
these Johnny Appleseeds of tiling theory left two open problems for us which may be
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answered using the Vn tiles. Before giving these problems and their solutions, we need
to go over some terminology.

A tile is a topological disk in the Euclidean plane, and a tiling of the plane is a
countable collection of tiles whose interiors are pairwise disjoint and whose union is
the plane. A tiling in which all of the tiles are congruent to one another is a monohe-
dral tiling. Two tiles of a tiling are neighbors if their intersection is nonempty, and the
neighborhood N (T ) of a tile T in a tiling is the collection of neighbors of T (includ-
ing T itself). For example, the neighborhood of a square in a standard edge-to-edge
tiling by squares is that square and the eight squares surrounding it. It is possible that
the union of the tiles in N (T ) can fail to be simply connected, though it is difficult to
imagine this occurring in a monohedral tiling. The patch A (T ) generated by a tile T

in a tiling is N (T ) together with the minimal collection of tiles necessary to form a
simply connected union.

With this terminology, we are ready to state the problems.

1. Decide whether for some (or for each) r ≥ 3 there exists a tile T having the r-
enclosure property and which admits a tiling of the plane (see Grünbaum and Shep-
hard [3, p. 129] and [4]).

2. Show that if T is a monohedral tiling and T is a tile of T , then N (T ) = A (T )

(see Grünbaum and Shephard [4, p. 26]).

Solution to Problem 1. Problem 1 is readily solved by the Vn tiles. In particular,
if the beak angle of a Vn tile is a factor of π , then such Vn tiles admit spiral tilings
of the plane. As an added bonus, Vn can admit spiral tilings while demonstrating the
r-enclosure property! The Vn tile also admits periodic tilings of the plane similar to
that in Figure 2 while demonstrating the r-enclosure property.

Figure 8 Spiral tiling admitted by the V2 tile while displaying 4-enclosure property at
the center.
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Construction of the double spiral tiling by VN

1. Begin at the center of the tiling by enclosing the desired amount of prototiles within
two tiles.

2. To make the first layer of the spiral, fill in the two vertices where the enclosing tiles
meet with beaks of tiles.

3. To make the second layer, move around the first layer adding a beak to butt pair of
tiles followed by a single tile oriented so the beak is against the first layer.

4. To make the third layer, continue spiraling by adding two beak to butt pairs, then a
single tile oriented so the beak is against the first layer.

5. The next layers are built in this same fashion. If you are adding layer k, first add
k − 1 beak to butt pairs and then the single tile. One can continue tiling outward in
this fashion infinitely so that the entire plane is covered.

Solution to Problem 2. We provide a counterexample to show that the assertion of
Problem 2 is false: In Figure 9, let T be the tile shaded in black. We see that N (T ) 
=
A (T ) because the tile shaded black is a member of A (T ), but is not a member of
N (T ) (the tiles shaded gray are in both N (T ) and A (T )).

Figure 9 A (T ) 
= N (T ). T is the black tile. The darker gray tiles are members of A (T )

but not of N (T ). The tiles shaded light gray are in both N (T ) and A (T ).

Discussion and open questions

We do not know what kind of witchcraft H. Voderberg wielded to invent his self-
surrounding shape, but we do wonder if any tile with the r-enclosure property can be
in any substantial way different from the Voderberg tile. Its construction allows for
“self-spooning” (because of the rotated side), and we observe that this is critical to the
behavior of the tiles.

We close with some open questions:

1. Is there a three-dimensional analog of the Voderberg tile? That is, is there a 3-D tile
such that two copies can completely enclose some number of copies without gaps?
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2. Is there an essentially different kind of 2-D tile that admits tilings of the plane while
having the self-surrounding properties of the Voderberg tile?

3. Is there a 2-D tile such that two copies can completely surround (as an annulus)
some number of copies while tiling the plane? In Mann [5], we see a modification
of the Voderberg tile for which two copies can completely surround a number of
copies, but that shape does not tile the plane.

4. In Grünbaum and Shephard [4, p. 129], we find a generalization of the r-enclosure
property along with an open problem which we paraphrase here: A tile T has the
(m, n)-enclosure property if two copies T1 and T2 of T can be arranged so that
the complement of T1 ∪ T2 has m bounded components, the closure of which is
the union of n nonoverlapping copies of T . The open problem is: For each pair of
positive integers m and n, find a tile with the (m, n)-enclosure property.
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